Characterization of Jammed Packings with Maximal Disorder

In this paper, we characterize the global structure of MRJ sphere packings:

Three disordered 3D sphere configurations representing a “gas”, a “fluid”, and a “glass”

M. A. Klatt, S. Torquato. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations. Phys. Rev. E, 94:022152-1–22 (2016)

Packings of hard, impenetrable spheres are useful models of granular media, low-temperature states of matter, suspensions and biological systems. What is the structure of the most disordered among all mechanical stable packings?

A unique property of this maximally random jammed (MRJ) state is that despite the local disorder, similar to a liquid, there is a hidden long-range order that anomalously suppresses density fluctuations on large length scales, more like in a crystalline solid. In a series of papers, we describe both the local and global structure of such disordered sphere packings using a variety of different structural characteristics.

In this second article, we derive explicit formulas but also apply Monte Carlo methods. By comparing the structure of MRJ packings to common models of disordered materials, our shape analysis helps to distinguish, despite seemingly similar features in all of those systems, their distinctly different structure.

Moreover, these structural characteristics are related to a host of different effective physical behavior, for example, flow or diffusion in these systems as well as their elastic moduli or electromagnetic properties. Our analysis thus links problems from material science, chemistry, physics, mathematics and biology.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s