The gyroid is an ordered network-like labyrinth bounded by minimal surfaces. It has become a house-hold name in soft materials with order on the nanometer scale, for example in the nanoporous photonic crystals of some green butterflies.

B. Schuetrumpf, M. A. Klatt, K. Iida, G. E. Schröder-Turk, J. A. Maruhn, K. Mecke, and P.-G. Reinhard. Appearance of the Single Gyroid Network Phase in ‘Nuclear Pasta’ Matter. Phys. Rev. C, 91: 025801-1–7 (2015)
We here find by simulation that the same spatial gyroid structure forms spontaneously in nuclear matter at finite temperatures, as is prevalent in supernova explosions. While the structure of the gyroid in nuclear matter is the same as in soft materials, the length scale of a few femtometers is radically different, making this the discovery of the smallest reported gyroid found in dynamical simulations. The state of nuclear matter at this high nuclear density will greatly affect the neutrino transport during and after a supernova-explosion and is thus important to understand the production of heavy elements.
Link: https://journals.aps.org/prc/abstract/10.1103/PhysRevC.91.025801